Wikibibliographie ENCYCLEN

WIKINDX Resources

Proceedings Article: BibTeX citation key:  gabrilovich.575
Gabrilovich Evgeniy & Markovitch Shaul (2007). « Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis ». In Proceedings of The Twentieth International Joint Conference for Artificial Intelligence, Hyderabad, India 2007 209.
Added by: Laure Endrizzi 2006-11-22 23:02:07    Last edited by: Laure Endrizzi 2007-11-13 16:21:46
Categories: 4. interfaces et modes de consultation
Keywords: interface, visualisation, web sémantique, Wikipedia
Creators: Gabrilovich, Markovitch
Publisher: (Hyderabad, India)
Collection: Proceedings of The Twentieth International Joint Conference for Artificial Intelligence

Number of views:  2433
Popularity index:  20.3%

 
Abstract
Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedia. We use machine learning techniques to explicitly represent the meaning of any text as a weighted vector of Wikipedia-based concepts. Assessing the relatedness of texts in this space amounts to comparing the corresponding vectors using conventional metrics (e.g., cosine). Compared with the previous state of the art, using ESA results in substantial improvements in correlation of computed relatedness scores with human judgments: from $r=0.56$ to $0.75$ for individual words and from $r=0.60$ to $0.72$ for texts. Importantly, due to the use of natural concepts, the ESA model is easy to explain to human users.
Added by: Laure Endrizzi    Last edited by: Laure Endrizzi

 
Further information may be found at:

 
>

 

wikindx  v3.4.7 ©2006 VST v 1.0     |     Total Resources:  611     |     Database queries:  38     |     Script execution:  0.44435 secs

 


École normale supérieure de Lyon
Institut français de l'Éducation
Veille et Analyses
15 parvis René-Descartes BP 7000 . 69342 Lyon cedex 07
Standard : +33 (0)4 72 76 61 00
Télécopie : +33 (0)4 72 76 61 93